This page describes the constants, fields, and groups associated with the MNT4-753 curve.
    
      r
      :
      
Integer
      =
      0x01C4C62D92C41110229022EEE2CDADB7F997505B8FAFED5EB7E8F96C97D87307FDB925E8A0ED8D99D124D9A15AF79DB26C5C28C859A99B3EEBCA9429212636B9DFF97634993AA4D6C381BC3F0057974EA099170FA13A4FD90776E240000001
    
 
    
      q
      :
      
Integer
      =
      0x01C4C62D92C41110229022EEE2CDADB7F997505B8FAFED5EB7E8F96C97D87307FDB925E8A0ED8D99D124D9A15AF79DB117E776F218059DB80F0DA5CB537E38685ACCE9767254A4638810719AC425F0E39D54522CDD119F5E9063DE245E8001
    
 
    
    
      π½q
      is the field of integers mod 
      
q
      
      
        
          Binary representation
        
        Array(uint64, 12)
      
     
    
      π½q2 is constructed as \(\mathbb{F}_q[x] / (x^{2} = \alpha)\) where \(\alpha\) is 13. 
      Concretely, each element has the form \(a_0 + a_1 \sqrt{\alpha}\) and is represented as the tuple \((a_0, a_1)\).
      
      
        
          Binary representation
        
        Array(Array(uint64, 12), 2)
      
     
    
    
    
      b
      :
      
π½q
      =
      0x01373684A8C9DCAE7A016AC5D7748D3313CD8E39051C596560835DF0C9E50A5B59B882A92C78DC537E51A16703EC9855C77FC3D8BB21C8D68BB8CFB9DB4B8C8FBA773111C36C8B1B4E8F1ECE940EF9EAAD265458E06372009C9A0491678EF4
    
 
    
      \(G_1\)
      =
      
{ (x, y) β π½qβ¨―π½qο½y2=x3 + ax + b}
      
      
        
          Binary representation
        
        
          - 
            x
            :
            Array(uint64, 12)
          
 
          - 
            y
            :
            Array(uint64, 12)