Coda Home Prover Intro MNT6753

MNT6753

This page describes the constants, fields, and groups associated with the MNT6-753 curve.

r : Integer = 0x01C4C62D92C41110229022EEE2CDADB7F997505B8FAFED5EB7E8F96C97D87307FDB925E8A0ED8D99D124D9A15AF79DB117E776F218059DB80F0DA5CB537E38685ACCE9767254A4638810719AC425F0E39D54522CDD119F5E9063DE245E8001
q : Integer = 0x01C4C62D92C41110229022EEE2CDADB7F997505B8FAFED5EB7E8F96C97D87307FDB925E8A0ED8D99D124D9A15AF79DB26C5C28C859A99B3EEBCA9429212636B9DFF97634993AA4D6C381BC3F0057974EA099170FA13A4FD90776E240000001
e : Integer = 3
𝔽q is the field of integers mod q

Binary representation

Array(uint64, 12)
𝔽q3 is constructed as \(\mathbb{F}_q[x] / (x^{3} = \alpha)\) where \(\alpha\) is 11. Concretely, each element has the form \(a_0 + a_1 \sqrt[3]{\alpha} + a_2 \sqrt[3]{\alpha}^{2}\) and is represented as the tuple \((a_0, a_1, a_2)\).

Binary representation

Array(Array(uint64, 12), 3)
a : 𝔽q = 11
b : 𝔽q = 0x7DA285E70863C79D56446237CE2E1468D14AE9BB64B2BB01B10E60A5D5DFE0A25714B7985993F62F03B22A9A3C737A1A1E0FCF2C43D7BF847957C34CCA1E3585F9A80A95F401867C4E80F4747FDE5ABA7505BA6FCF2485540B13DFC8468A
\(G_1\) = { (x, y) ∈ 𝔽q⨯𝔽q|y2=x3 + ax + b}

Binary representation

  • x : Array(uint64, 12)
  • y : Array(uint64, 12)
\(\tilde{a}\) : 𝔽q3 = (0, 0, a)
\(\tilde{b}\) : 𝔽q3 = (11β‹…b, 0, 0)
\(G_2\) = { (x, y) ∈ 𝔽q3⨯𝔽q3|y2=x3 + \(\tilde{a}\)x + \(\tilde{b}\)}

Binary representation

  • x : Array(Array(uint64, 12), 3)
  • y : Array(Array(uint64, 12), 3)